Perpetual Learning Framework based on Type-2 Fuzzy Logic System for a Complex Manufacturing Process

نویسندگان

  • Ali Baraka
  • George Panoutsos
  • Stephen Cater
چکیده

This paper introduces a perpetual type-2 Neuro-Fuzzy modelling structure for continuous learning and its application to the complex thermo-mechanical metal process of steel Friction Stir Welding (FSW). The ‘perpetual’ property refers to the capability of the proposed system to continuously learn from new process data, in an incremental learning fashion. This is particularly important in industrial/manufacturing processes, as it eliminates the need to retrain the model in the presence of new data, or in the case of any process drift. The proposed structure evolves through incremental, hybrid (supervised/unsupervised) learning, and accommodates new sample data in a continuous fashion. The human-like information capture paradigm of granular computing is used along with an interval type-2 neural-fuzzy system to develop a modelling structure that is tolerant to the uncertainty in the manufacturing data (common challenge in industrial/manufacturing data). The proposed method relies on the creation of new fuzzy rules which are updated and optimised during the incremental learning process. An iterative pruning strategy in the model is then employed to remove any redundant rules, as a result of the incremental learning process. The rule growing/pruning strategy is used to guarantee that the proposed structure can be used in a perpetual learning mode. It is demonstrated that the proposed structure can effectively learn complex dynamics of input-output data in an adaptive way and maintain good predictive performance in the metal processing case study of steel FSW using real manufacturing

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIMULATION AND MONITORING OF THE MACHINING PROCESS VIA FUZZY LOGIC AND CUTTING FORCES

On time replacement of a cutting tool with a new one is an important task in Flexible Manufacturing Systems (FMS). A fuzzy logic-based approach was used in the present study to predict and simulate the tool wear progress in turning operation. Cutting parameters and cutting forces were considered as the input and the wear rate was regarded as the output data in the fuzzy logic for construct...

متن کامل

Reinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic

In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...

متن کامل

A New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations

A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...

متن کامل

Variable Impedance Control for Rehabilitation Robot using Interval Type-2 Fuzzy Logic

In this study, a novel variable impedance control for a lower-limb rehabilitation robotic system using voltage control strategy is presented. The majority of existing control approaches are based on control torque strategy, which require the knowledge of robot dynamics as well as dynamic of patients. This requires the controller to overcome complex problems such as uncertainties and nonlinearit...

متن کامل

Fuzzy analytical network process logic for performance measurement system of e-learning centers of universities

This paper proposes an efficient performance measurement system to evaluate the excellence of e-learning centers of universities. The proposed system uses the analytic network process (ANP) as an effective multi-criteria decision making (MCDM) method and its fuzzy mode to respond to uncertainties in judgements. This system also needs a targeted and systematic criteria set which is collected thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017